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Abstract- The field of Complex Adaptive Systems (CAS) is 

approximately 20 years old, having been established by 
physicists, economists, and others studying complexity at the 
Santa Fe Institute in New Mexico, USA. The field has spawned 
much work, such as Holland’s contributions of genetic 
algor ithms, classifier  systems, and his ecosystem simulator , which 
assisted in provoking the fields of evolutionary computation and 
ar tificial life. The framework of inducted principles derived from 
many natural and artificial examples of complex systems has 
assisted in the investigation in such diverse fields of study as 
psychology, anthropology, genetic evolution, ecology, and 
business management theory, although a unified theory of such 
complex systems still appears to be a long way off. This work 
reviews the principles of complex adaptive systems as a 
framework, providing a number  of interpretations from eminent 
researches in the field. Many example works are cited, and the 
theory is used to phrase some ambiguus work in the field of 
ar tificial immune systems and artificial life. The methodology of 
using simulations of CAS as the starting point for  models in the 
field of biological inspired computation is postulated as an 
impor tant contr ibution of CAS to that field.  
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I.    INTRODUCTION 
Complex Adaptive Systems (CAS) refers to a field of 

study and resultant conceptual framework for natural 
and artificial systems that defy reductionist (top-down) 
investigation. Such systems are generally defined as 
being composed of populations of adaptive agents whose 
interactions result in complex non-linear dynamics, the 
results of which are emergent system phenomena. As a 
field of study, CAS is concerned with (1) comparing 
natural and artificial examples of CAS to distil general 
properties and processes and (2) investigate computer 
simulations of simplified models of natural systems. 
CAS provides a conceptualisation and framework for a 
class complex systems and their resultant phenomena 
providing both computational tools and inducted 
principles. The field is inherently interdisciplinary, 
drawing strongly from complexity science, systems 
theory, control theory and network theory, and weakly 
from related fields such as statistical mechanics, 
artificial intelligence, game theory, and optimization. 

There are many ways consider complexity and to 
address complex systems, and the framework of 
complex adaptive systems is but one conceptualisation. 
Anderson [43] provides an insightful summary of eight 
popular theories or 

�

ways
�

 of thinking about complexity, 

which highlights the diversity of such approaches. 
1. Mathematical �  modern complexity theory of Turing and von Neumann, 
the lemma-theorem-proof structure. The so called theory of complexity of 
modern computer science which includes the contribution of complexity 
classes (NP completeness).  
2. Information Theory �  Measures of complexity and information in 
Hamming space as bits in terms of order and randomness. Called a theory of 
limits, for example cannot hold more bits than the number of synapse in our 
natural network. 
3. Ergodic Theory �  The study of dissipative dynamical maps including 
orbits, attractors, and deterministic dynamical systems. Includes chaos theory 
and bifurcation theory. 
4. Ar tificial Entit ies �  The study of artificial entities in computers such as 
cellular automata (CA). Such work results in simulations such as the game of 
life, and the theory of 

�

edge of chaos
�

 in which complexity may be at its 
highest between randomness and regularity. 
5. Large Random Physical Systems �  Systems that have statistical 
mechanics of complexity with complex high-dimensional attractors. These 
systems are typically non-ergodic such as random manifolds, percolation, 
localisation, spin glass and neural networks. Also includes Kauffman

�

s fitness 
landscape conception of complex systems (rather than attractors) in the 
context of biological evolution. 
6. Self-Organised Cr iticality (SOC) �  Systems in which are driven by some 
conservative quantity uniformly at a large scale, are able to dissipate it only to 
microscopic fluctuations, have fluctuations at all scales (as opposed to cycles 
of stability or system failure, although the systems are not considered 
adaptive). The systems lead to random fractals of state and scaling laws for 
the distributions of avalanches.  
7. Ar tificial Intelligence (AI ) �  To investigate complex adaptive systems by 

building them. The example provided is an expert system, Holland
�

s adaptive 
systems such as genetic algorithms and classifier systems. 
8. Wetware �  The attempt to investigate complex adaptive systems by 
studying them. The attempt to understand how complex systems like the brain 
work without attempting to specify a set of underlying principles. The naturist 
approach of studying systems. 

Figure 1 - Summary of Anderson's eight paths to complexity theory 

COMPLEX ADAPTIVE SYSTEMS 
The study of Complex Adaptive Systems (CAS) is 

the study of high-level abstractions of natural and 
artificial systems that are generally impervious to 
traditional analysis techniques. Macroscopic patterns 
emerge from the dynamic and nonlinear interactions of 
the systems low-level (microscopic) adaptive agents. 
The emergent patterns are more than the sum of there 
parts, thus the traditional reductionist methodology fails 
to describe how the macroscopic patterns emerge. 
Rather, holistic and totalistic investigatory approaches 
are applied that relate the simple rules and interactions 
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of the simple adaptive agents to their emergent effects in 
a 

�

bottom-up
�

 manner.  
Generally, examples of CAS are drawn most systems 

studied in biology, sociology and economics. Some 
often cited examples include: the development of 
embryos, function of the adaptive immune system, 
ecologies, genetic evolution, thinking and learning in the 
brain, weather systems, market economies, trading 
systems, social systems, cultures, politics, traffic 
systems, insect swarms, the flocking of birds, 
implementation of new ideas, the testing of scientific 
theories, and bacteria becoming resistant to an antibiotic.  

As mentioned, computer simulated models play a 
large role in investigating CAS where the system is 
reduced to its simplest essential aspects. These 
simulation models themselves demonstrate the traits of 
complex adaptive systems and thus provide a fertile 
ground for controlled experimentation. Some modelling 
approaches used and developed for this purpose include 
cellular automata (CA), agent-based models (ABM), 
artificial neural networks (ANN), genetic algorithms 
(GA), and learning classifier systems (LCS).  

A. A Note on CAS History 

The field of complex adaptive systems was founded 
at the Santa Fe Institute (SFI) in New Mexico, USA, in 
the late 1980

�

s (perhaps the SFI meeting on complexity 
in economics in 1987, proceedings: [44]) by a group of 
physicists, economists, and others interested in studying 
complex systems in which the agents of those systems 
change.  

Perhaps one of the largest contributors to the 
inception of the field from the perspective of adaptation 
was John Henry Holland. Holland  was particularly 
interested in adaptive systems from the perspective of 
genetic evolution [17]. He conceptualised an 

�

adaptive 
plan

�

, which was the progressive modification of 
structures by means of suitable operators. From adaptive 
plans, he was interested in the question of how 
computers could be programmed so that problem-
solving capabilities are built up by specifying: 

�

what is 
to be done

�

 rather than 
�

how to do it
�

. A specialisation of 
his adaptive plan called the 

�

genetic plan
�

 ultimately 
contributed to the founding of the field of genetic 
algorithms and evolutionary computation. In the 1992 
reprint of his book, he provided a summary of CAS with 
a computational example called ECHO. His work on 
CAS was expanded in a later book [16] which provided 
an in depth study of the topic. He also released yet 
another related work on theories of emergence and rules 
for emergent phenomena [18].  

The study of complex adaptive systems was 
undertaking intensely at the SFI throughout the early to 
mid 1990

�

s resulting in the release of many books and 
papers. A few of more popular works are listed. Waldrop 
[38] provided a detailed review of the science of 
complexity, self-organisation, and adaptation recounting 
the history and inception of the field of CAS and its 
main findings. Gell-Mann [40] also produced a seminal 
work on complexity theory including many detailed 
illustrative examples. Also of note are two seminal 
edited volumes on CAS [9] and [39]. 

B.Definition by Inducted Principles 

There is no clear definition of a complex adaptive 
system rather sets of parsimonious principles and 
properties, with, in many cases, different researches in 
the field defining their own nomenclature [41]. This 
section lists some common and regarded interpretations 
of such general principles. 

In Chapter 10 of the 1992 reprint of his book [17] 
Holland provided a preliminary outline of the 
similarities and difficulties of complex adaptive systems. 
Nonlinear  Inter actions �  A large number of individual parts undergoing 
simultaneous nonlinear interactions where the emergent behaviour is more 
than the some of the parts. 
Aggregate Behaviour  �  The impact of the system is its aggregate behaviour, 
the behaviour of the system as a whole, which is often feed back to the parts 
modifying their behaviour 
Change �  Interaction of the parts evolves over time and the parts may face 
perpetual novelty. These systems typically operate far from global optimum 
and far from equilibrium. 
Anticipation �  In adapting to changing circumstance, the parts anticipate the 
consequences of their responses. The aggregate anticipation affects the 
systems behaviour and this is the least understood property of such systems. 

Figure 2  - An early proposal of the general principles of CAS by Holland 

Holland suggests three reasons as to why CAS may 
be difficult to study with conventional approaches: (1) 
The systems lose the majority of their features when the 
parts are isolated. (2) The systems are highly dependant 
on their history making it difficult to compare instances 
and derive trends. (3) They operate far from global 
optimum and points of equilibrium making them hard to 
assess with conventional approaches that are concerned 
with 

�

end points
�

 of systems. 
Holland goes on to stress the need for a unified 

theory of complex adaptive systems, and suggests that 
the framework for such a theory could be built with the 
mechanisms of parallelism, competition, and 
recombination. He also suggests that such systems 
respond instance-by-instant [14], and the importance of 
the systems ability to balance exploration (acquisition of 
new information or capabilities) with exploitation 
(efficient use of information or capabilities already 
available).  In a detailed extension and elaboration on his 
contribution towards a theory of CAS [16], Holland 
suggests 4 properties, and 3 mechanisms, which a CAS 
must possess, which have become a de facto template for 
phrasing a system as a CAS. 
Aggregation �  (property) Complexity emerges from the interaction of smaller 
components, which themselves may be the products of systems. 
Tagging �  (mechanism) Agents are differentiated and posses a manner in 
which to discriminate agents with particular properties.  
Nonlinear ity �  (property) Agents interact in dynamical and non-linear ways  

Flows �  (property) Agents organise into networks of interaction in which one 
interaction may trigger (flow) following interactions. 
Diversity �  (property) Agents evolve to fill diverse niches, which are defined 
by the specifics of agent interactions. The concept of a niche outlives the 
inhabiting agents, and the evolution of niches has a larger impact on the 
system than the evolution of agents (levels of abstraction and control). 
Internal Models �  (mechanism) Agents are changed through there 
interactions, and the changes bias future actions (agents adapt). The internal 
representations possess information as how to exploit the regularity of their 
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interactions, without necessarily explicitly defining that regularity.  
Building Blocks �  (mechanism) Components are reused for multiple 
purposes.  

Figure 3  - A paraphrase of Holland's seven aspects of a CAS 

Gell-Mann [39,40] differentiates his definition from 
Holland

�

s by suggesting that Holland
�

s CAS must have a 
collective of interacting and adaptive agents, where his 
definition states that each one of Holland

�

s agents is 
considered a complex adaptive system. In [39], Gell-
Mann specifies a cycle for CAS which is composed of 
six core elements and four concerning issues. He goes on 
to detail a series of questions related to investigating 
each point. 
1. Coarse graining �  trade-off between the coarseness for manageability of 
information and fineness for adequate detail in information 
2. Identification �  sorting out of regularities from randomness in information 
from the environment 
3. Compression �  perceived regularities are compressed into a schema 

4. Var iation �  variation and improvement of schema (adaptation or evolution) 

5. Application �  use of schema to the systems environment, also considered 
decompression of schema 
6. Selection �  the consequences of selective pressures in the real world 
providing feedback and affecting competition for schemata 
Issues �  issues related to the six aspects of a CAS lifecycle include: (1) time 
scales, (2) the system included as a component in other systems, (3) systems 
with humans in the loop, and (4) system composed of many other co-adapting 
systems. 

Figure 4  - Summary of Gell-Mann's lifecycle and related issues of a CAS 

Arthur [63] proposes a definition of complex systems 
as studied in economics with six properties, although 
refers to such systems (as he claims Holland would) as 
�

adaptive nonlinear networks
�

.  These properties, like 
Holland

�

s, are also cited as standard CAS principles. 
Dispersed Interaction �  Emergent effects are the result of the actions of 
many dispersed, possibly heterogeneous, agents acting in parallel. The action 
of an agent is dependant on the anticipated actions of a limited number of 
other agents, and the aggregate state the limited set of agents create 
No Global Controller  �  No global entity controls interactions, rather controls 
are provided by competition and coordination between agents. Economic 
actions are mediated by the rules of the environment.  
Crosscutting Hierarchical I nteraction �  A system has many levels of 
organisation of and interaction. Units at any level of abstraction within the 
system serve as 

�

building blocks
�

 for constructing units at high levels of 
abstraction. The interactions are more than hierarchical with tangled and 
crosscutting concerns. 
Continual Adaptation �  behaviours, actions, strategies and products are 
revised continually as the individual agents accumulate experience, the system 
constantly adapts. 
Perpetual Novelty �  The changes introduced by adaptation continually create 
new opportunities for exploration, the result is ongoing, perpetual novelty 
Out-of-equilibr ium Dynamics �  Because of the continual change and 
adaptation, the system operates far from global optimum and equilibrium. 
Improvements are always possible and regularly occur. 

Figure 5 �  A paraphrase of Arthur's six aspects of adaptive nonlinear networks 

Dooley [21] provides a condensed definition of CAS. 
In his definition, agents are the base elements of the 
system that adapt in response to interactions. The 
adaptations that occur operate upon agent schema, a 

representation that defines agent rules and interactions. 
Agent fitness is optimized locally relative to the local 
microenvironment. The flow of information is non-
linear. Agents are tagged (perhaps heterogenous 
function) and aggregates of heterogenous agents can 
form meta-agents. 

Levin [52] in his phrasing of ecology and the 
biosphere as a CAS acknowledges Arthur

�

s principles 
(as well as  Holland

�

s 4 properties), although distils them 
into three essential aspects. 
Diversity �  sustained diversity and individuality of components 

Local Interactions �  localised interactions between components 

Selection �  An autonomous process that selects from among components a 
subset for replication or enhancement, based on the results of local 
interactions amongst components 

Figure 6  - Three essential elements of CAS distilled by Levin from Arthur 

C. Features and Relations 

Levin [53] summarises CAS and reviews some of the 
mathematical challenges in the field, in particular 
unsolved problems of pattern recognition, and the 
dynamics of system innovation related to the 
mathematics of ecology and population biology. He 
cautions the limited predictability of results from 
simulation to the natural systems. Jost [19] suggests that 
the environment in which a CAS exists is more complex 
than the CAS itself and that CAS depends on regularities 
in its environment. Jost goes on to provide a rigorous 
assessment of CAS in the context of internal and 
external complexity. External complexity is defined as 
the amount of input, information, energy the system 
obtains from the environment. Internal complexity is the 
complexity of the internal representation of the 
information it takes as input (model complexity). The 
goal of the system is to handle as much input as possible, 
as simple model as possible, to attempt to increase the 
external complexity and reduce the internal complexity 
of the system. 

Emergence is an important aspect of CAS, for 
example Holland devoted a book to the subject [18]. 
Holland

�

s thesis was that adaptation leads to complexity, 
that local rules lead to emergent control and order. The 
trade-off in emergent control is causation at the level of 
the individual components of the system. Self-
Organization is another important aspect of CAS. 
Kauffman

�

s thesis [59,60] is that in addition to the 
pressure of selection in adaptation, order can come about 
from self-organization, so called 

�

order for free
�

. In his 
work on developing a theoretical foundation for 
evolutionary biology, Kauffman [60] also clearly 
elucidate complex systems in the context of a high-
dimensional fitness landscape, a notion now ubiquitous 
in optimization theory.  

The continuous adaptation in a CAS may be seen as a 
trade-off between too much rigidity in the face of change 
and too much change in the face of achieved progress (a 
re-phrasing of the exploration-exploitation duality). 
Work by Langton [3] coined the phrase 

�

edge of chaos
�

 
describing complex systems as operating at critical 
points at the fringe (a phase transition away) from 
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randomness. While disputed by in the context of some 
experimentation (such as [36]), the theory highlights the 
potential fragility of these system, that a crash or failure 
may occur given an ineffective holistic system response.  

II. A SAMPLE OF WORKS 
This section highlights some seminal and interesting 

works on both phrasing natural systems as complex 
adaptive systems, and computational investigations on 
the theory of such systems. 

Ecology is the study of systems of living organisms, 
and has proven a prototypical example of CAS. Levin 
[52] phrases ecology and the biosphere as complex 
adaptive systems in the complex of Holland

�

s four 
properties, Arthur

�

s six properties and Levin
�

s own three 
distilled properties. Bonabeau [7] phrases social insect 
colonies (ant

�

s, termites, etc) as CAS and show
�

s how 
such systems fit all the properties discussed by Levin for 
ecology and the biosphere, and stresses self-organization 
as a critical feature in social insect systems. Hartvigsen, 
Kinzig, et al. [8] discuss the convention of systems 
theory in ecology and phrase ecosystems as complex 
adaptive systems. They describe the interactions in such 
systems being either strong and direct or weak and 
diffuse with positive and negative feedback. They also 
describe a difficulty of analysing such systems as being 
the large spatial and temporal scales involved. Railsback 
[51] applies CAS as it pertains to individual-based 
modelling (IBM) in ecosystems, as CAS require the 
modelling of the rules and interactions of individuals to 
obtain their emergent effects. Sigmund [20] proposes a 
model of reciprocal altruism in the context of CAS, 
investigating the evolution of cooperation with computer 
simulations of the prisoners

�

 dilemma (PD). Finally, 
Janssen [34] proposed CAS as a way to interpret global 
change with specific examples of the control of malaria, 
and climate change. 

In his early work mentioning CAS [17], Holland  
phrased a model ecosystem called ECHO as a computer 
simulation to investigate complex adaptive systems. This 
system was elaborated in is later book devoted to the 
topic [16]. Forrest and Jones [58] investigated CAS 
using ECHO. They succinctly differentiate complex 
adaptive systems from complex systems by the adaptive 
property of their agents (adopting Hollands definition). 
They also propose that in modelling CAS, it is desirable 
to strip away as much details as possible and develop 
models with robust behaviour (not too sensitive to 
parameters). They investigated broad notions of species 
abundance in ecosystems with ECHO with results that 
matched observations. Hraber, Jones, et al. [42] also 
investigated the abundance of species and species 
diversity with ECHO, commenting evolution as being a 
critical component of the model. Smith and Bedau [46] 
investigated ECHO in the context of  Holland

�

s 
definition of CAS. From their experimental evidence 
they concluded that the system lacks the diversity of 
hierarchically organised aggregates to be considered a 
CAS. Specifically the system supports the genetic 
diversity without the phenotypic diversity in terms of the 
emergent ecologies created within the system (trading 
and combat). They suggest an alternative to ECHO

�

s 

failure to match the definition, that perhaps Holland
�

s 
definition was too specialised. They also suggest that 
perhaps additional features could be added to the 
simulation to achieve the missing effect. Finally Harris 
[4] provides an implementation and through treatment of 
the platform.  

Other interesting examples of natural and artificial 
systems phrased as complex adaptive systems include; 
organisation change in business (management theory) 
[22], supply networks [61], technology and innovation 
theory using patent citation rates [23], the modelling of 
agent-based computational economies (ACE) [30], 
analogy making in models of cognition (the copycat 
system) [35], control of the electrical power grid [1], 
anthropology [62] and the simulation of artificial 
societies [11], enterprise application integration (EAI) 
[12] with business objects as agents, innovation as a 
steady stream of novelty [15], models of the evolution of 
language [32], and the relationship between the 
management of nursing homes and quality of care 
[31,50]. 

A final interesting example is that of Goldstone and 
Sakamoto [45] that in the context of psychology, 
investigated and measured the transfer of the abstract 
principles of complex adaptive systems to graduate 
students using four different interactive scenarios. They 
claim that given the ubiquity of such systems, and the 
difficulty in grasping their inter-disciplinary principles, 
it is important to understand how such principles can be 
learned. This was in itself addressed as an example of a 
complex adaptive system. 

III.COMPLEX ADAPTIVE SYSTEMS AND THE IMMUNE SYSTEM 
The acquired immune system of vertebrates is an 

often cited example of a natural complex adaptive 
system [14,33,58]. 

Some examples of the acquired immune system 
phrased as a complex adaptive system include: A 
simulation of the immune system and the AIDS using a 
cellular automata (CA) [2]. A simulation of vaccination 
in the immune system using agents [6]. A general 
summary of the immune system and simulation 
approaches in the context of CAS [5]. The simulation of 
an immune system and HIV using elements of classifier 
systems, genetic algorithms and cellular automata [13].  

There are many models and simulations of the 
acquired immune system that do not explicitly use the 
framework of complex adaptive system, although use 
some of the computational tools (such as genetic 
algorithms), and terminology (emergence, agents, etc.). 
Although the literature that matches this definition is 
vast, there is a pocket of work by Forrest, et al. in the 
early 1990

�

s, that does match this definition, and whose 
contribution is clear when interpreted with the CAS 
framework in mind. 

In summary, the work centres on a binary-encoded 
immune system model to study different aspects of the 
immune system [54] (inspired by an earlier binary-
encoded pattern recognition model of the immune 
system [10]), which is simulated using Holland-style 
genetic algorithms. The system demonstrated the ability 
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to: (1) perform pattern recognition in the context of a 
noisy environment [57], (2) discover and maintain 
coverage of a diverse antigen population [47,48] (with 
results similar to some niching genetic algorithms for 
optimization), (3) to learn effectively in the presence of 
incomplete information [49], among other contributions. 

 The ambiguity comes because the work has been 
phrased in the context of artificial life [37], and 
computation and pattern recognition [55]. The system 
was used as the basis for what evolved into 

�

computer 
immunology

�

 (the transitional form was a paper by 
Forrest, Perelson, et al. [56]) to perform pattern 
recognition for information technology problems such as 
virus detection and intrusion detection. It is this final 
perspective, which has blurred the work from a study of 
artificial life (alife), to that of artificial immune systems 
(AIS), which in the context of the study of complex 
adaptive systems, becomes quite clear. 

Another body of work, whose contribution is 
clarified in the context of complex adaptive systems 
from artificial immune systems, comes from Lee Segel, 
et al. They propose the acquired immune system as a 
prototype autonomous decentralised system, a prototype 
�

bottom-up
�

 artificial intelligence [24,29] (and his book 
on such systems from SFI [28]). As well as his 
conceptualisation of the immune system as an example 
of diffuse feedback in a diffuse system [25-27]. It is 
believed that these models when phrased as CAS may 
provoke useful starting points for systems in the field of 
biologically inspired computation for application to 
engineering and information technology problem 
domains. 

IV.    CONCLUSION  
Holland

�

s perspective on complex adaptive systems 
has been most popular in the field of evolutionary 
computation, which he assisted in provoking. The 
genetic algorithm and learning classifier systems are 
staple Computational Intelligence (CI) techniques for 
suitable difficult domains such as design, engineering, 
and pattern recognition. A clear and provoking 
observation from this divergence, and the Forrest, et al.

�

s 
immune system case study is how in both cases the 
adaptive models assisted to trigger related fields in CI 
(specifically Biologically Inspired Computation (BIC)). 
Undoubtedly another example would be the field of 
artificial neural networks as applied to classification and 
function approximation, having also derived from CAS 
models (although before CAS was conceptualised a 
SFI). This observation was also made by Mitchell in 
1993 [33] (and I am sure others) as a viable way of 
contributing to CI and BIC. Perhaps the diffuse models 
Segal, et al. could be a case study for such an inspiration. 

Finally, it is important again to highlight that 
although CAS is an interesting and potentially potent 
conceptualisation, it is only that, and there has been 
much work in agent modelling, artificial life and 
computational biology (and other computational 
variations of physical sciences) that do not acknowledge 
or conform to the CAS framework. Another potentially 
interesting extension would be to phrase the acquired 
immune system as a CAS, and elucidate how this 

complex biological system conforms to Holland
�

s 
properties and mechanisms and Gell-Mann

�

s CAS cycle. 
Conforming the immune system to this framework and 
to these interpretations specifically may yield additional 
interesting models to for exploitation in the field of 
artificial immune systems (AIS). 
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